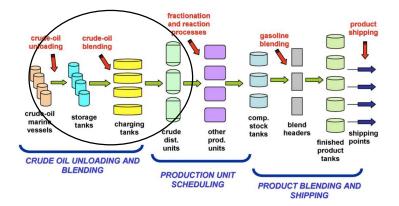


(日) (四) (三) (三)

Scheduling of oil-refinery operations

Felipe Díaz-Alvarado², Francisco Trespalacios¹, Ignacio Grossmann¹

 1 Center for Advanced Process Decision-making. Carnegie Mellon University 2 Department of Chemical and Biotechnological Engineering. University of Chile

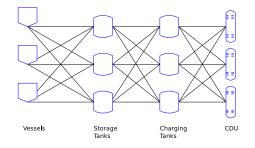

March 2015

A scheduling problem Solution

> Closure Appendix

The problem

Scheduling of oil-refinery operations


Méndez, C.A., Grossmann, I.E., Harjunkoski, I., Kaboré, P. A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Computers & Chemical Engineering, 2006, 30 (4): 614-634.

A scheduling problem Solution

The problem

Crude oil unloading and blending: current example

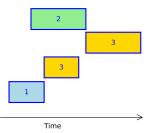
Closure

- Non-simultaneous load and unload
- Vessels can unload to any storage tank.
- Bounds for blend composition in Charging tanks.
- Concentration limits are specified for the products.
- Product yields are specified for each crude.
- Minimum product yields for CDU.

A (10) > (10)

Model Solution strategy Schedule

Priority-slot based formulation


A scheduling problem has two main decisions on time arrangement:

- Sequence of operations.
- Timing for each operation (start, duration, end).

We use **Priority-slot** based formulation $(\neq \text{Time-slot})$ for **continuous-time** scheduling.

Separated variables for:

- Priority (Z).
- Timing (S, D, E).

() < </p>

Mouret, S., Grossmann, I., Pestiaux, P. A Novel Priority-Slot Based Continuous-Time Formulation for Crude-Oil Scheduling Problems. Industrial & Engineering Chemistry Research, 2009, 48 (18): 8515-8528.

Model Solution strategy Schedule

MINLP Model

- ▶ Binary variables: Ziv
 - ► Assignment decisions: Z_{iv}
- Continuous variables:
 - ▶ Time decisions: S_{iv}, D_{iv}, E_{iv}
 - Volume decisions: V^t_{iv}, V_{ivc}
 - Level decisions: L^t_{ir}, L_{irc}
- Linear constraints:
 - Continuous distillation:
 - Volume bounds:
 - Volume composition:
 - Level definition: $L_{irc} = L_{0rc} + \sum_{i \in T, i \leq i} \sum_{v \in I_r} V_{ivc} \sum_{i \in T, i \leq i} \sum_{v \in O_r} V_{ivc}$
 - Level limitations:
 - Flowrate limitations:
 - Property specifications:
 - Crude blend demands:
 - • •
- Nonlinear constraint:
 - Composition constraint:

 $rac{V_{ivc}}{V_{iv}^t} = rac{L_{irc}}{L_{ir}^t} \Leftrightarrow V_{ivc} \cdot L_{ir}^t = L_{irc} \cdot V_{iv}^t$

 $FR_{v} \cdot D_{iv} \leq V_{iv}^{t} \leq \overline{FR_{v}} \cdot D_{iv}$

 $D_r \leq \sum_{i \in T} \sum_{v \in O} V_{iv}^t \leq \overline{D_r}$

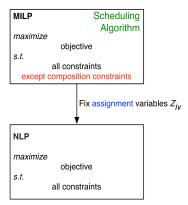
 $x_{vk} \cdot V_{iv}^t \leq \sum_{c \in C} \overline{x_{ck}} V_{ivc} \leq \overline{x_{vk}} \cdot V_{iv}^t$

 $\sum_{i \in T} \sum_{v \in I_r} D_{iv} = H$ $V_v^t \cdot Z_{iv} \le V_{iv}^t \le \overline{V_v^t} \cdot Z_{iv}$

 $V_{iv}^t = \sum_{c \in C} V_{ivc}$

 $L^t_* < L^t_* < \overline{L^t_*}$

Mouret, S. Optimal Scheduling of Refinery Crude-Oil Operations. Ph.D. Thesis. Department of Chemical Engineering. Carnegie Mellon University. 2010.


Díaz-Alvarado, Trespalacios, Grossmann

Model Solution strategy Schedule

Solution strategy

• Solution with global solver (BARON) for MINLP.

 Solution with two stages: MILP (CPLEX) + NLP (BARON or CONOPT). Loop: 20 cycles.

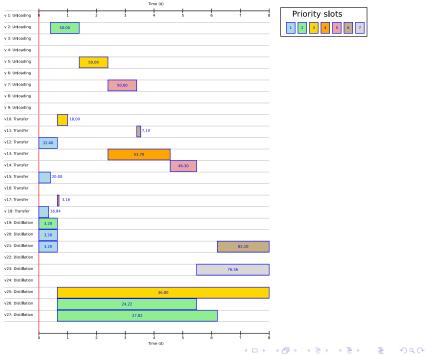
Mouret, S., Grossmann, I., Pestiaux, P. A Novel Priority-Slot Based Continuous-Time Formulation for Crude-Oil Scheduling Problems. Industrial & Engineering Chemistry Research, 2009, 48 (18): 8515-8528.

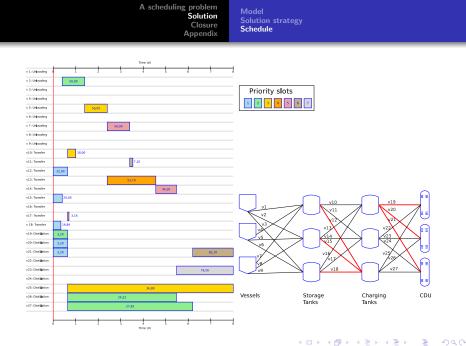
Solution

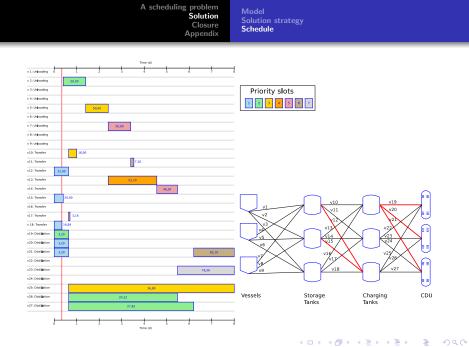
• Time horizon: 8 days.

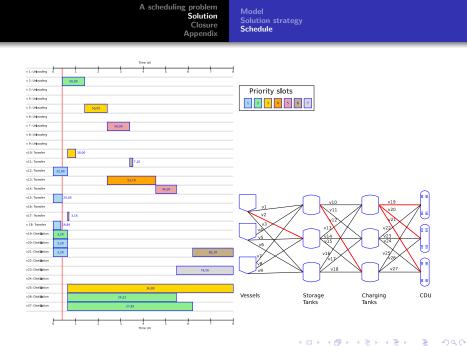
- 7 Priority Slots.
 - $6 \rightarrow$ the problem is not feasible.

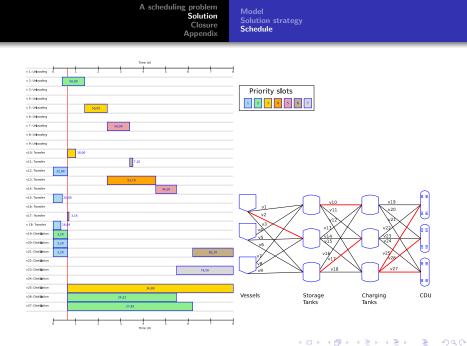
æ

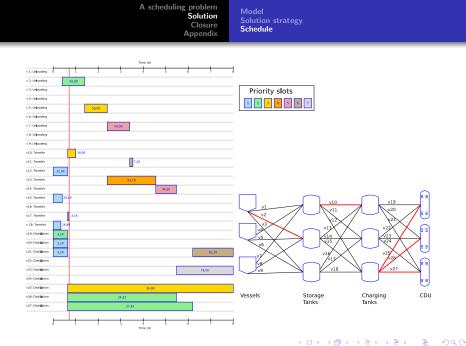

• 8 \rightarrow the problem is larger.

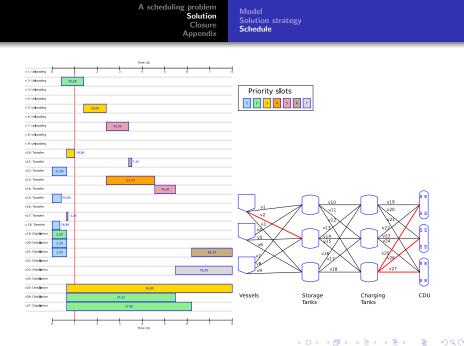

Global						
# Continuous Vars.:	2311					
# Discrete Vars.:	189					
# Constraints:	5738					
	1st stage (MILP)	2nd stage (NLP)				
# Removed Constraints:	755	1043				
# Constraints:	4983	4695				

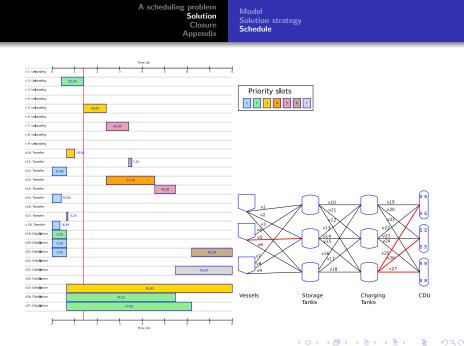

				Best solu	Ition
Strategy	First stage	Second stage	CPU Time [s]	Obj. Fun.	Difference with best
MILP + NLP	CPLEX	BARON	3829	60.400	0.71%
MILP + NLP	CPLEX	CONOPT	159	60.829	0.00%
MINLP	BA	RON	(*) 90000	60.793	0.06%

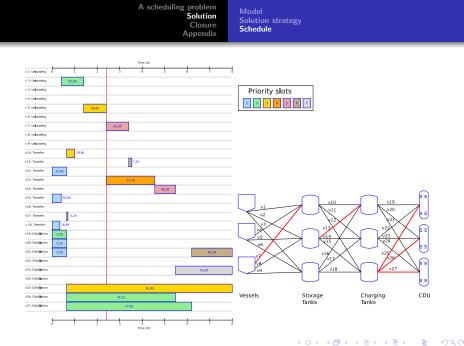

(*) Time limit.

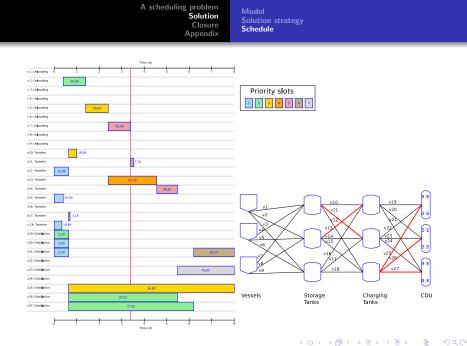

Díaz-Alvarado, Trespalacios, Grossmann Scheduling of oil-refinery operations

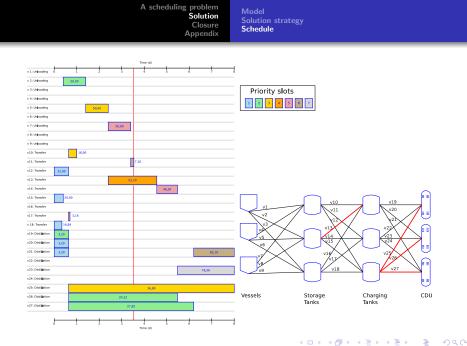


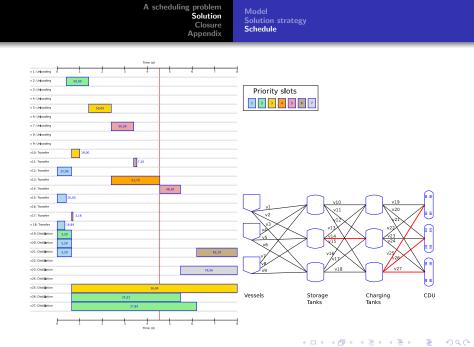




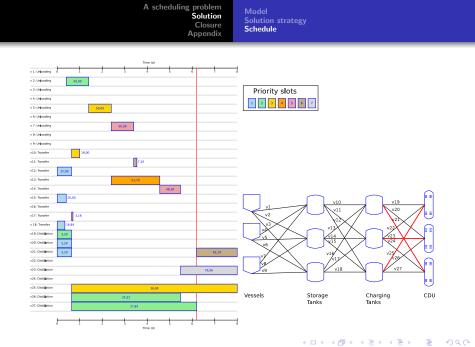


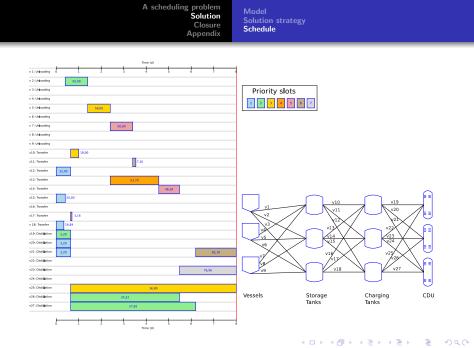












Partial conclusions and future work

Partial conclusions:

- The **two-stages strategy** (MILP + NLP) gives a solution in a shorter CPU time than the MINLP with global solver.
- Why does this strategy work? Two hypothesis:
 - Few blending operations where nonlinearities are active.
 - Nonlinear constraint has no influence on priorities.

Future work in this instance:

- Improve the algorithm.
- Decide the number of priority slots.
- Scale up.
- Decomposition.

- 4 同 6 4 日 6 4 日 6

Scheduling of oil-refinery operations

Felipe Díaz-Alvarado², Francisco Trespalacios¹, Ignacio Grossmann¹

 1 Center for Advanced Process Decision-making. Carnegie Mellon University 2 Department of Chemical and Biotechnological Engineering. University of Chile

March 2015

felidiaz@ing.uchile.cl

Data Mode

Solution (first obtained and best)

Global					
# Continuous Vars.:	2311				
# Discrete Vars.:	189				
# Constraints:	5738				
	1st stage (MILP)	2nd stage (NLP)			
# Removed Constraints:	755	1043			
# Constraints:	4983	4695			

			First feasible solution		First feasible solution Best solution			
Strategy	First stage	Second stage	CPU Time [s]	Obj. Fun.	Difference with best	CPU Time [s]	Obj. Fun.	Difference with best
MILP + NLP	CPLEX	BARON	3829	60.400	0.71%	3829	60.400	0.71%
MILP + NLP	CPLEX	CONOPT	122	60.400	0.71%	159	60.829	0.00%
MINLP	BA	RON				(*) 90000	60.793	0.06%

(*) Time limit.

イロト イヨト イヨト

Data Model

Data for the example

Time horizon: 8 days. Priority slots: 7

Vessels	Arrival time	Initial crude type	Initial crude vol. [Mbbl]
1	0	1	50
2	0	2	50
3	0	3	50
Storage TK	Capacity [Mbbl]	Initial crude type	Initial crude vol. [Mbbl]
1	100	4	50
2	100	2	20
3	100	2	20
Charging TK	Capacity [Mbbl]	Initial crude type	Initial crude vol. [Mbbl]
1	100	3	20
2	100	4	20
3	100	1	20

Flowrates	LB	UB
Unloading	0	50
Transfer	0	50
Distillation	5	50

Maximum transferable volume [Mbbl] 100

Díaz-Alvarado, Trespalacios, Grossmann

Scheduling of oil-refinery operations

イロト イヨト イヨト

Data Model

Data for the example

Blend Composition in Charging tanks (vol/vol)					
	Crude 1	Crude 2	Crude 3	Crude 4	
Charging TK 1	[0 , 1]	[0,0.9]	[0.1, 1]	[0 , 1]	
Charging TK 2	[0 , 1]	[0, 0.9]	[0 , 1]	[0.1, 1]	
Charging TK 3	[0.1, 1]	[0,0.9]	[0 , 1]	[0 , 1]	

Property 1 (sulfur concent	Cost [MM\$/Mbbl]	
Crude 1	0.1	0.05
Crude 2	0.6	0.3
Crude 3	0.2	0.1
Crude 4	0.5	0.25

	Property 1	Revenue [MM\$/Mbbl]
Prod. 1	[0.2,0.6]	0.5
Prod. 2	[0.1,0.5]	0.1
Prod. 3	[0.1,0.5]	0.7

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Data Mode

Data for the example

Product Yield	Prod. 1	Prod. 2	Prod. 3
Crude 1	0.5	0.3	0.1
Crude 2	0.2	0	0.7
Crude 3	0	0.9	0
Crude 4	0.5	0.25	0.25

Prop. 1 Yield by Product	Prod. 1	Prod. 2	Prod. 3
Crude 1	0.1	0.9	0
Crude 2	0.8	0.1	0.1
Crude 3	0.5	0.3	0.1
Crude 4	0	0.2	0.7

Minimum Product Yield	Prod. 1	Prod. 2	Prod. 3
CDU 1	0	0	0
CDU 2	0	0	0
CDU 3	0	0	0

Demand	Prod. 1	Prod. 2	Prod. 3
CDU 1	[5 ,1000]	[0 ,1000]	[0 ,1000]
CDU 2	[0,1000]	[5 ,1000]	[0 ,1000]
CDU 3	[0 ,1000]	[0 ,1000]	[5 ,1000]

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Model

General operating constraints

• Time in operations:

$$S_{tw} \ge S_w^{\prime o} \cdot z_{tw} \quad t \in T, w \in W$$
 (1)

$$E_{tw} \leq I_w^{up} \cdot z_{tw} \quad t \in T, w \in W$$
(2)

$$E_{tw} = S_{tw} + D_{tw} \cdot z_{tw} \quad t \in T, w \in W$$
(3)

• Volume and flowrates in operations:

$$V_w^{lo} \cdot z_{tw} \le V_{tw} \le V_w^{up} \cdot z_{tw} \qquad t \in T, w \in W$$
(4)

$$V_{tw} = \sum_{c \in C} \hat{V}_{twc} \qquad t \in T, w \in W$$
(5)

< □ > < □ > < □ > < Ξ > < Ξ > ...

$$F_{w}^{lo} \cdot D_{tw} \leq V_{tw} \leq F_{w}^{up} \cdot D_{tw} \qquad t \in T, w \in W$$
(6)

$$x_{wk}^{lo} \cdot V_{tw} \leq \sum_{c \in C} x_{ck}^{0} \cdot \hat{V}_{twc} \leq x_{wk}^{up} \cdot V_{tw} \quad t \in T, w \in W, k \in K$$
(7)

• No overlapping constraints:

$$z_{tw} + z_{tw'} \le 1$$

$$t \in T, w \in W, w' \in NO_{w,w'}, w' > w$$
(8)

$$E_{t_1w} + E_{t_1w'} + \sum_{t \in T}^{t_1 < t < t_2} (D_{tw} + D_{tw'}) \le S_{t_2w} + S_{t_2w'} + H \cdot (1 - z_{t_2w} - z_{t_2w'})$$

$$t_1, t_2 \in T, w \in W, w' \in NO_{w,w'}, w' > w$$
(9)

・ロト ・回 ト ・ヨト ・ヨト

Constraints on blending and charging tanks

Inventory definition:

$$L_{tr} = L_r^0 + \sum_{t' \in T}^{t' < t} \sum_{w \in I_r} V_{t'w} - \sum_{t' \in T}^{t' < t} \sum_{w \in O_r} V_{t'w}$$
$$t \in T, r \in R_S \cup R_C$$
(10)

$$\hat{L}_{trc} = \hat{L}_{rc}^{0} + \sum_{t' \in T}^{t' < t} \sum_{w \in I_{r}} \hat{V}_{t'wc} - \sum_{t' \in T}^{t' < t} \sum_{w \in O_{r}} \hat{V}_{t'wc}$$
$$t \in T, r \in R_{S} \cup R_{C}, c \in C$$
(11)

$$L_{tr} = \sum_{c \in C} \hat{L}_{trc}$$
$$t \in T, r \in R_S \cup R_C$$
(12)

э

• Blending constraints:

$$\hat{V}_{twc} \cdot L_{tr} = V_{tw} \cdot \hat{L}_{trc} \quad t \in T, r \in R_S \cup R_C, w \in O_r, c \in C$$
(13)

$$CD_{rc}^{\prime o} \cdot V_{tw} \leq \hat{V}_{twc} \leq CD_{rc}^{up} \cdot V_{tw} \qquad t \in T, r \in R_C, w \in W_D, c \in C$$
 (14)

• Inventory bounds:

$$L_r^{lo} \leq L_{tr} \leq L_r^{up} \quad t \in T, r \in R_S \cup R_C$$
(15)

< □ > < □ > < □ > < Ξ > < Ξ > ...

$$L_r^{lo} \le L_r^0 + \sum_{t \in T} \sum_{w \in I_r} V_{tw} - \sum_{t \in T} \sum_{w \in O_r} V_{tw} \le L_r^{up} \qquad r \in R_S \cup R_C$$
(16)

Constraints on CDUs

• Limit the number of discharge operations to CDUs:

$$N_r^{lo} \le \sum_{t \in T} \sum_{w \in I_r} z_{tw} \le N_r^{up} \quad r \in R_D$$
(17)

• Ensure constant operation:

$$\sum_{t \in T} \sum_{w \in I_r} D_{tw} = H \quad r \in R_D$$
(18)

イロト イヨト イヨト

æ

• Product yield and properties in products:

$$VP_{twp} = \sum_{c \in C} PY_{wcp}^{0} \cdot \hat{V}_{twc} \qquad t \in T, w \in W_{D}, p \in P$$
(19)
$$\hat{VP}_{twpk} = \sum_{c \in C} PP_{wcpk}^{0} \cdot PY_{wcp}^{0} \cdot \hat{V}_{twc} \qquad t \in T, w \in W_{D}, p \in P, k \in K$$
(20)

• Limits on demands, product demands, and specifications in products:

$$DD_{r}^{lo} \leq \sum_{t \in T} \sum_{w \in I_{r}} V_{tw} \leq DD_{r}^{up}$$
$$r \in R_{D}$$
(21)

$$PY_{rp}^{Io} \cdot V_{tw} \leq VP_{twp}$$

$$t \in T, r \in R_D, w \in I_r, p \in P$$
(22)

$$PP_{wpk}^{lo} \cdot VP_{twp} \leq \hat{VP}_{twpk} \leq PP_{wpk}^{up} \cdot VP_{twp}$$
$$t \in T, w \in W_D, p \in P, k \in K$$
(23)

$$PD_{rp}^{lo} \leq \sum_{t \in T} \sum_{w \in I_r} VP_{twp} \leq PD_{rp}^{up}$$
$$p \in P, r \in R_D$$
(24)

・ロト ・回ト ・ヨト ・ヨト

A scheduling problem Solution Data Closure Model Appendix	
--	--

• Complete unloading of Vessels:

$$\sum_{t \in T} \sum_{w \in O_r} V_{tw} = L_r^0 \quad r \in R_V$$
(25)

◆□→ ◆圖→ ◆厘→ ◆厘→ ---